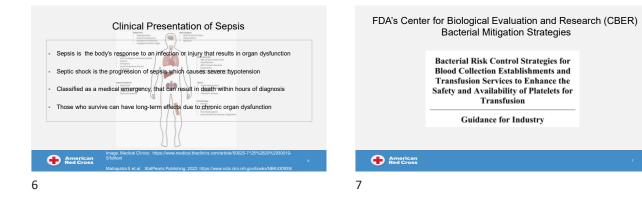
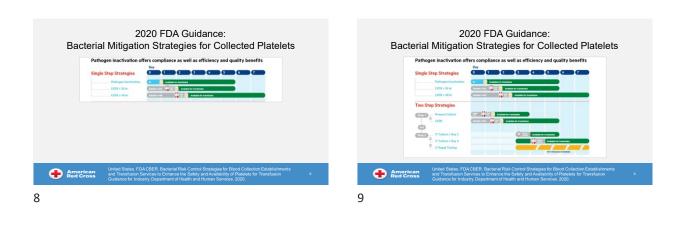

Disclosure Statement

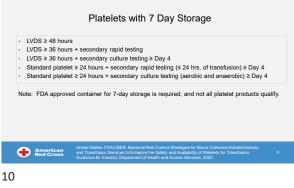
- I have no real or apparent conflict of interest or other relationships related to the content of this presentation.
- There is no off-label and/or investigational use of products discussed in this presentation.
- I have no relevant financial relationship to disclose

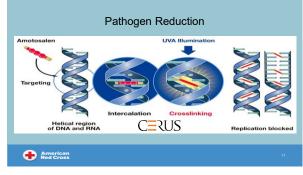
American Red Cross

1






Transfusion Transmission Infection (TTI) Risk

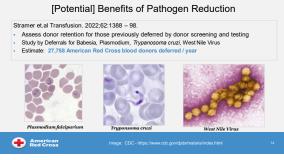

1	FDA reported that for the four-year	Microorganism	Risk per Unit Transfused
	period of 2016 – 2020, 184 transfusion fatality cases were	HIV	1:2,135,000
	reported; of which 13% were	HBV	1:277,000
	associated with contamination.	HCV	1:1,930,000
	Bacterial contamination is the	HTLV	1:2,993,000
	Leading transfusion transmitted infection risk with platelet units.	Treponema pallidum (Syphilis)	Rare (last reported US case in 1966
		Trypanosoma cruzi (Chagas)	7 cases (US and Canada)
	Reported clinical septic reactions	WNV	1:350,000
	of ~1:5000 units transfused is	Zika Virus	2 reported cases (Brazil)
	likely an under-representation.	Bacteria - Platelets	1:1,000 -1:5,000

American Red Cross

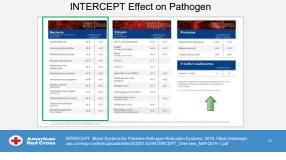
Pathogen Reduction INTERCEPT Blood Systems - Illuminator - 6 minutes exposure to UV-A light. Product is transferred to another container which contains a compound adsorption device (CAD). Product is placed on an agitator. Plasma 12 – 24 hours; Platelet additive solution (PAS) 6 – 16 hours. Transfer to final product container. American Red Cross

12

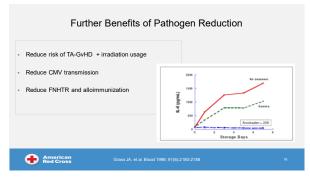
Benefits of Pathogen Reduction

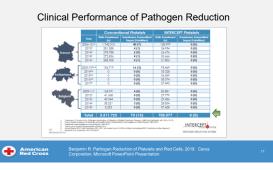

PR can reduce risk of accepting donors with the following:

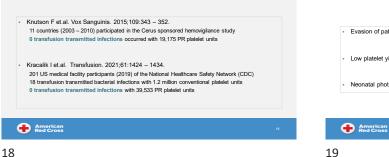
- With an asymptomatic presentation
- Non-compliance to responding to eligibility questionnaire (e.g., test seekers)


Consideration to the limitations of current testing (1) presence of microbes below the test's detection threshold; (2) directed to a select panel of pathogens; (3) lack of universal testing for infections in endemic area or detection of emerging infections

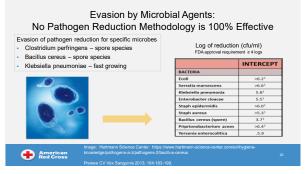
American Red Cross



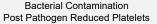



14

15



Clinical Performance of Pathogen Reduction


Residual Effects of Transfused Platelets

- · Evasion of pathogen reduction by microbial agents
- Low platelet yields impact to therapeutic efficiency
- Neonatal phototoxicity

20

- FDA 12/2/2022 communication: Important Information for Blood Establishments and Transfusion Services Regarding Bacterial Contamination of Platelets for Transfusion
- Seven cases reported with combination of the following bacteria: Acinetobacter spp, Staphylococcus saprophyticus, Lecleria adecaboxylata
- · Four of the seven reported cases were associated with PR platelets. Two died of sepsis.
- · CDC genetic testing of three events indicated a similar source
- Source remained to be determined

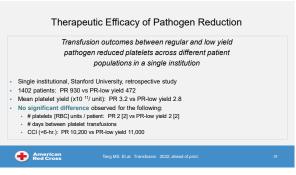
American Red Cross

Low Platelet Yield and Its Impact on Hemostatic Control

- Known factors that can impact PR platelet counts and function per unit Narrow range of platelets required per unit to ensure pathogen reduction processing
- Processing loss during product transfer to receiving containers
- Premature activation during processing and storage (especially if PAS is present)

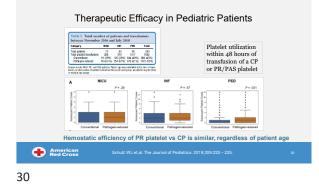
Metrics of hemostatic control

- Post-transfusion platelet Corrected Count Increment, CCI-1, -24 hrs. (normal >5,000 -7,500)
- Number of RBC and platelets used to control bleeding
- · Frequency of platelets used after the initial bleeding event, to control subsequent bleeds


American Red Cross

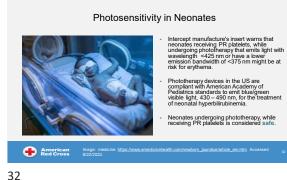
sis PR < 6 S: 318 PR/PA 7 CP: 16	S: 11,100 PR/	PAS: 6,700 10,100	PR = CP Patients with 1+ event PR/PAS: 186 (58.8%) CP: 188 (57.5%) 	PR > CP PR/PAS: 8.4 CP: 6.2	PR < CP PR/PAS: 1.9 CP: 2.4
			PR/PAS: 4.8 CP: 4.3		
sis or WB Not do S: 263 S: 265 2	CP/ PR/ CP/	PAS < CP PAS: 5,000 PAS: 8,200 10,200	CP/PAS: 120 (45.3%) CP: 114 (42.5%) RBC units/patient PR/PAS: 5.1 CP/PAS: 5.1	PR > CP PR/PAS: 6 CP/PAS: 5 CP: 5	PR < CP PR/PAS: 2 CP/PAS: 2.7 CP: 3
	5: 263 3: 265	s 263 2 265 2 265 CP CP CP CP CP CP	263 265 27/PAS < CP PR/PAS: 500 CP/PAS: 500 CP/PAS: 500 CP/10,200	5: 263 CT/PAS < CT	5: 263 PR/PAS: 5 CP PR/PAS: 5000 PR/PAS: 16 (47/36) CP/PAS: 5000 CP/PAS: 5000 CP/PAS: 5000 CP/PAS: 51 CP/PAS: 51 CP/PAS: 51 CP/PAS: 51 CP/PAS: 51

Study	Study Subjects	CCI 1-hr.	CCI 24-hr.	Bleeding Events # Patients with ≥ WHO Grade 2	PLT Transfusions Unitsper Patient	PLT Transfusions Interval in Days
SPRINT 2004	Apheresis PR/PAS: 318 CP: 327	PR < CP PR/PAS: 11,100 CP: 16,000	PR < CP PR/PAS: 6,700 CP: 10,100	PR = CP Patients with 1+ event PR/PAS: 186 (58.8%) CP: 188 (57.5%) RBC units / patient PR/PAS: 4.8 CP: 4.3	PR > CP PR/PAS: 8.4 CP: 6.2	PR < CP PR/PAS: 1.9 CP: 2.4
EFFIPAP 2018	Apheresis or WB PR/PAS: 263 CP/PAS: 265 CP: 262	Not done	PR/PAS < CP/PAS < CP PR/PAS: 5,000 CP/PAS: 8,200 CP: 10,200	PR = CP Patients with 1+event PR/PAS: 126 (47.9%) CP/PAS: 120 (45.3%) CP: 114 (42.5%) RBC units/patient PR/PAS: 5.1 CP/PAS: 5.1 CP/PAS: 5.3	PR > CP PR/PAS: 6 CP/PAS: 5 CP: 5	PR < CP PR/PAS: 2 CP/PAS: 2.7 CP: 3
•	American Red Cross			il. Blood. 2004;104: 1534 – AMA Oncology. 2018;4:468		25


Study	Study Subjects	CCI 1-hr.	CCI 24-hr.	Bleeding Events # Patients with ≥ WHO Grade 2	PLT Transfusions Units per Patient	PLT Transfusions Interval in Days
SPRINT 2004	Apheresis PR/PAS: 318 CP: 327	PR < CP PR/PAS: 11,100 CP: 16,000	PR < CP PR/PAS: 6,700 CP: 10,100	PR = CP Patients with 1+ event PR/PAS: 186 (58.8%) CP: 188 (57.5%) RBC units / patient PR/PAS: 4.8 CP: 4.3	PR > CP PR/PAS: 8.4 CP: 6.2	PR < CP PR/PAS: 1.9 CP: 2.4
EFFIPAP 2018	Apheresis or WB PR/PAS: 263 CP/PAS: 265 CP: 262	Not done	PR/PAS < CP/PAS < CP PR/PAS: 5,000 CP/PAS: 8,200 CP: 10,200	PR = CP Patients with 1+ event PR/PAS: 126 (47.9%) CP/PAS: 120 (45.3%) CP: 114 (42.5%) RBC units/patient PR/PAS: 5.1 CP/PAS: 5.1 CP/5.3	PR > CP PR/PAS: 6 CP/PAS: 5 CP: 5	PR < CP PR/PAS: 2 CP/PAS: 2.7 CP: 3
	American Red Cross			l. Blood. 2004;104: 1534 : AMA Oncology. 2018;4:468		26

Study	Study Subjects	CCI 1-hr.	CCI 24-hr.	Bleeding Events # Patients with ≥ WHO Grade 2	PLT Transfusions Units per Patient	PLT Transfusions Interval in Days
SPRINT 2004	Apheresis PR/PAS: 318 CP: 327	PR < CP PR/PAS: 11,100 CP: 16,000	PR < CP PR/PAS: 6,700 CP: 10,100	PR = CP Patients with 1+ event PR/PAS: 186 (58.8%) CP: 188 (57.5%) RBC units / patient PR/PAS: 4.8 CP: 4.3	PR > CP PR/PAS: 8.4 CP: 6.2	PR < CP PR/PAS: 1.9 CP: 2.4
EFFIPAP 2018	Apheresis or WB PR/PAS: 263 CP/PAS: 265 CP: 262	Not done	PR/PAS < CP/PAS < CP PR/PAS: 5,000 CP/PAS: 8,200 CP: 10,200	PR = CP Patients with 1+event PR/PAS: 126 (47.9%) CP/PAS: 120 (45.3%) CP: 114 (42.5%) RBC units/patient PR/PAS: 5.1 CP/PAS: 5.1 CP/S.3	PR > CP PR/PAS: 6 CP/PAS: 5 CP: 5	PR < CP PR/PAS: 2 CP/PAS: 2.7 CP: 3
•	American Red Cross			l. Blood. 2004;104: 1534 – AMA Oncology. 2018;4:468		27

<section-header><figure><figure><figure>

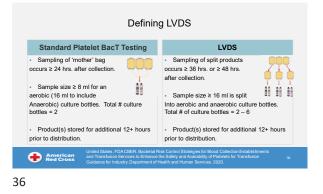

Therapeutic Efficacy in Pediatric Patients

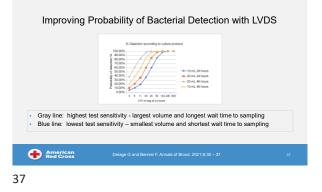
Chest tube output (ml/kg/h) with time points, median (IQR)	Non-PR platelets (n = 104)	PR platelets (n = 36)	p-value
1 h	3.5 (2.3-5.8)	3.8 (2.7-6.3)	.286
2 h	2.2 (1.5-3.6)	2.6 (1.9-3.6)	.334
4 h	1.7 (1.1-2.4)	2.3 (1.4-2.8)	.082
8 h	1.3 (0.8-1.8)	1.9 (0.9-1.9)	.562
24 h	0.6 (0.3-0.9)	0.6 (0.4-0.9)	.770

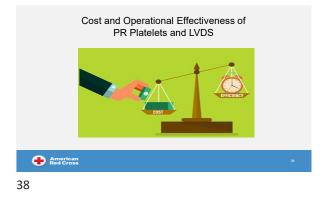
No significant differences were seen between patients receiving either product type for the following: (1) quantity of supportive blood products received; and (2) PICU length of stay, length or mechanical ventilation, thrombotic events, nosocomial infections, and in-hospital mortality.

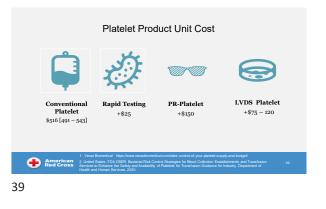
American Red Cross

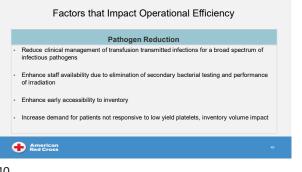
31

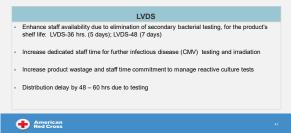

Photosensitivity in Neonates


Study	Product	Adverse Reaction
Schulz WL et.al. (2019)	29 - PR/PAS	none
Lasky B et.al. (2021)	6 - PR 6 - CP 7 - PR + CP	none
American Red Cross	Schulz WL et.al. The Journal of Pediatrics. 2 Lasky B et.al. Transfusion. 2021;61:2869 – 2	

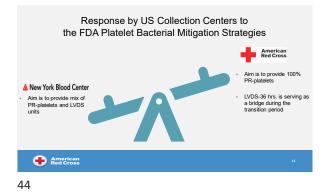


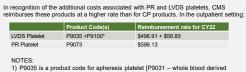



35



Factors that Impact Operational Efficiency

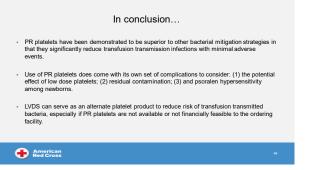



Hospital Usage

	Year	Facility type	Percent of facilities reporting transfusion of PRT units, % (n/N)	PRT apheresis platelet units transfused (n)	
	2019	Hospital Transfusion of Pathogen Reduced Units, Total	13 (247/1908)	175,017 (n - 214)	
		Hospital-based blood center	17 (11/64)	33,617 (n = 10)	
		8000 or more inpatient surgeries annually*	29 (46/159)	104,052 (n - 42)	
		Less than 8000 inpatient surgeries annually*	11 (190/1685)	37,348 (n - 162)	
	2017	Hospital Transfusion of Pathogen Reduced Units, Total	6 (138/2279)	52,752 (n - 119)	
		Hospital-based blood center	13 (11/84)	18,796 (n - 11)	
		Greater than 8000 inpatient surgeries annually*	14 (22/152)	22,380 (n = 19)	
		Less than 8000 inpatient surgeries annually*	5 (105/2043)	11,576 (n - 89)	
	*Excludin	g hospital-based blood centers.			
		National Blood Utilization and Comparison of PR platelet us			
🕂 🕂	nerican d Cross				

	LVDS-36 hrs.	LVDS-48 hrs.	PR		
Annual Costs					
Acquisition	\$1,982,864	\$1,982,864	\$1,939,288		
Wastage	\$206,480	\$163,636	\$188,699		
Transfusion	\$113,149	\$113,149	\$113,149		
Sepsis	\$22,073	\$22,073	\$0		
Outpatient Reimbursement	\$575,018	\$575,018	\$577,959		
Net annual Costs	\$1,759,549	\$1,706,704	\$1,663,177		

American Red Cross


Reimbursement Considerations

platelets]
P9100 is a testing code, applies to bacterial testing. This is the only instance where two P Codes can be combined in a claim for a single product

American Red Cross

43

